3.4.85 \(\int \frac {1}{(a+b x^3) \sqrt {c+d x^3}} \, dx\) [385]

Optimal. Leaf size=59 \[ \frac {x \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {1}{3};1,\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a \sqrt {c+d x^3}} \]

[Out]

x*AppellF1(1/3,1,1/2,4/3,-b*x^3/a,-d*x^3/c)*(1+d*x^3/c)^(1/2)/a/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {441, 440} \begin {gather*} \frac {x \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {1}{3};1,\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(x*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 1, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/c)])/(a*Sqrt[c + d*x^3])

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {\sqrt {1+\frac {d x^3}{c}} \int \frac {1}{\left (a+b x^3\right ) \sqrt {1+\frac {d x^3}{c}}} \, dx}{\sqrt {c+d x^3}}\\ &=\frac {x \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {1}{3};1,\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a \sqrt {c+d x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(161\) vs. \(2(59)=118\).
time = 10.04, size = 161, normalized size = 2.73 \begin {gather*} -\frac {8 a c x F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{\left (a+b x^3\right ) \sqrt {c+d x^3} \left (-8 a c F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c F_1\left (\frac {4}{3};\frac {1}{2},2;\frac {7}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d F_1\left (\frac {4}{3};\frac {3}{2},1;\frac {7}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-8*a*c*x*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)])/((a + b*x^3)*Sqrt[c + d*x^3]*(-8*a*c*AppellF
1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 3*x^3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x
^3)/a)] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 6.
time = 0.31, size = 429, normalized size = 7.27

method result size
default \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)
elliptic \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*I/d^2*2^(1/2)*sum(1/_alpha^2/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^
2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)
*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^
2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*Elli
pticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),
1/2*b/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*
_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1
/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x^{3}\right ) \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

Integral(1/((a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\left (b\,x^3+a\right )\,\sqrt {d\,x^3+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^3)*(c + d*x^3)^(1/2)),x)

[Out]

int(1/((a + b*x^3)*(c + d*x^3)^(1/2)), x)

________________________________________________________________________________________